

Unveiling Knowledge Boundary of Large Language Models for Trustworthy Information Access

Yang Deng¹, Moxin Li², Liang Pang³, Wenxuan Zhang⁴, Wai Lam⁵

¹Singapore Management University ²National University of Singapore
 ³Institute of Computing Technology, Chinese Academy of Sciences
 ⁴Singapore University of Technology and Design ⁵The Chinese University of Hong Kong

Information Access

Information access refers to the processes and technologies that enable users to locate, retrieve, and use information from various sources (e.g., documents, databases, the web).

Large Language Models

LLMs as A New Information Source

Information access refers to the processes and technologies that enable users to locate, retrieve, and use information from various sources (e.g., documents, databases, the web, **LLMs**).

The Rise of Generative Information Retrieval

Effectiveness

- Knowledge of all documents in corpus is encoded into model parameters, which can be optimized directly in an end-to-end manner
- Directly generates precise and coherent answers, rather than simply returning a list of documents, reducing the cognitive load on users.

The Rise of Generative Information Retrieval

Efficiency

- Generative models store knowledge within model parameters, reducing the overall memory size compared to indexing huge document collections.
- Shortens total session time, enhancing perceived latency efficiency from a userexperience perspective.

Concerns on Trustworthiness and Reliability

Read the given question and select the most appropriate answer.
How do you repair a torn shirt?
A. Prepare the needle and thread. Pull together the fabric and sew together.
B. Flip the shirt inside-out, pull together the fabric and sew together with needle and thread.

A (incorrect answer) I am 70% sure this is correct! accuracy = 0confidence = 0.7worse calibration

P Do LLMs Know What They Don't Know?

Kapoor et al., "Large Language Models Must Be Taught to Know What They Don't Know" (NeurIPS '24)

Li et al., "Think Twice Before Assure: Confidence Estimation for Large Language Models through Reflection on Multiple Answers" (EMNLP '24 Findings)

Known-Unknown Quadrant categorizes knowledge based on the LLM's possession and the LLM's awareness of such knowledge

Yin et al., "Do Large Language Models Know What They Don't Know?" (ACL '23 Findings)

	[Knows	Unknows	
		o know what you know and what you o not know, that is true knowledge. – Confucius		
Enable LLMs		Unlock		LLMs should
to better know what they know.	الله Unknows	Unknown Knows	Unknown Unknows	also know what they don't know.

Schedule

Time	Section	Presenter
9:00-9:10	Introduction	Wai Lam
9:10-9:30	Taxonomy of Knowledge Boundary	Yang Deng
9:30-10:00	Undesired Behaviors of LLMs	Yang Deng
10:00-10:30	Identification of Knowledge Boundary	Moxin Li
10:30-11:00	Coffee Break	
11:00-11:20	Mitigation of Out-of-Boundary Knowledge: Outward Boundary	Moxin Li
11:20-11:50	Mitigation of Out-of-Boundary Knowledge: Parametric Boundary	Liang Pang
11:50-12:10	Mitigation of Out-of-Boundary Knowledge: Universal Boundary	Yang Deng
12:10-12:30	Open Challenges and Beyond + Q&A	Wenxuan Zhang

Definition of Knowledge Boundary

- \mathcal{K} : the whole set of abstracted knowledge that is known to human
- k: a piece of knowledge that can be expressed by a set of input-output pairs $Q_k = \{(q_k^i, a_k^i)\}_i$
- θ : the parameters of a specific LLM

(b) Example Queries with Different Types of Knowledge

Definition of Knowledge Boundary

Three Types of Knowledge Boundary

- **O**utward Knowledge Boundary
- Parametric Knowledge Boundary
- Universal Knowledge Boundary

Four Types of Knowledge

- Prompt-Agnostic Known Knowledge (PAK)
- Prompt-Sensitive Known Knowledge (PSK)
- Model-Specific Unknown Knowledge (MSU)
- Model-Agnostic Unknown Knowledge (MAU)

Outward Knowledge Boundary

- Outward Knowledge Boundary defines the observable knowledge boundary for a specific LLM.
- ☐ The knowledge verification is usually conducted on a limited available subset of expressions $\hat{Q}_k \subseteq Q_k$.
- □ Knowledge within this boundary refers to the knowledge that the LLM can generate correct outputs for the input for all instances in \hat{Q}_k .

Prompt-Agnostic Known Knowledge

Prompt-Agnostic Known Knowledge (PAK) can be verified by all expressions in \hat{Q}_k for the LLM θ regardless of the prompt.

 $K_{\mathsf{PAK}} = \{k \in \mathcal{K} | \forall (q_k^i, a_k^i) \in \hat{Q}_k, P_{\theta}(a_k^i | q_k^i) > \epsilon\}$

Li et al., "Knowledge Boundary of Large Language Models: A Survey" (ACL '25)

Parametric Knowledge Boundary

Parametric Knowledge Boundary defines the abstract knowledge boundary for a specific LLM.

□ Knowledge within this boundary is possessed in the LLM parameters, which could be verified by at least one expression in Q_k .

Prompt-Sensitive Known Knowledge

Prompt-Sensitive Known Knowledge (PSK) resides within the LLM's parameters *θ* but is sensitive to the form of the prompt.

$$\begin{split} K_{\mathsf{PSK}} &= \{k \in \mathcal{K} | (\exists (q_k^i, a_k^i) \in Q_k, P_{\theta}(a_k^i | q_k^i) > \epsilon) \\ & \wedge (\exists (q_k^i, a_k^i) \in \hat{Q}_k, P_{\theta}(a_k^i | q_k^i) < \epsilon) \} \end{split}$$

Universal Knowledge Boundary

□ Universal Knowledge Boundary defines the whole set of knowledge known to human, which is verifiable by certain input-output pairs in Q_k .

Model-Specific Unknown Knowledge

■ Model-Specific Unknown Knowledge (MSU) is not possessed in the specific LLM parameters θ , thus cannot be verified by any instance in Q_k for the LLM, but the knowledge itself is known to human.

 $K_{\mathsf{MSU}} = \{k \in \mathcal{K} | \forall (q_k^i, a_k^i) \in Q_k, P_{\theta}(a_k^i | q_k^i) < \epsilon\}$

Li et al., "Knowledge Boundary of Large Language Models: A Survey" (ACL '25)

Model-Agnostic Unknown Knowledge

Model-Agnostic Unknown Knowledge (MAU) is unknown to human, thus unverifiable regardless of the model.

$$K_{\mathsf{MAU}} = \{k \in \mathcal{K} | Q_k = \emptyset\}$$

Definition of Knowledge Boundary

- $\square \mathcal{K}$: the whole set of abstracted knowledge that is known to human
- □ *k*: a piece of knowledge that can be expressed by a set of input-output pairs $Q_k = \{(q_k^i, a_k^i)\}_i$
- \Box θ : the parameters of a specific LLM

Limitations

- □ Formal definition of the knowledge k. We define the abstracted concept of knowledge as k, which is represented by a set of textual expressions of input and output Q_k .
- □ Various forms of textual expressions Q_k . We aim to provide a universal definition without the loss of generality.
- □ **Knowledge unknown to human.** We omit this type of knowledge, since its nature and implications remain unclear.